5. Implementing Linux/X.25

5.1 Overview of Linux

Linux is a freely available clone of the UNIX operating system. Its roots are in a programming project by Linus Torvalds in Finland who wished to investigate programming his Intel based PC. Unlike most individual projects this project grew into a fully fledged operating system kernel project, this would not have been possible without access to the Internet and all of its resources. The model chosen for the operating system was UNIX due to its open nature and the large quantity of freely available software available for it. Much of this software came from the GNU project and from parts of the BSD version of UNIX.

Over the period of its development Linux has changed from being very Intel centric in its design to being multi-platform with support available for hardware based on SUN Sparcs, Power PC, DEC Alpha, MIPS and the Motorola 680x0 series. As well as supporting many different hardware families, Linux also supports many different communications protocols, of which X.25 is one of the latest.

The organisation of a communications protocols under Linux is a hierarchy. The following diagram shows this.

�

The lines between the protocol engine, device driver and user programs which go via the kernel indicates that the communication between these units is via kernel services and not as a direct call. This ensures that the each unit sees a unified interface to the levels above and below it, despite the differences within those units. The lines between these units and the kernel indicate that the unit makes use of some other kernel facilities such as timers or queues.

One of the most powerful and unique aspects of Linux is that of loadable modules. It is possible to build protocols, device drivers and file systems as separate object modules which are not part of the kernel when it boots. If the services of one of these modules is then required it can either be loaded into the kernel manually using the insmod(8) command or it can be made to load automatically using a program called kerneld(8). This feature is unknown in other versions of UNIX.
When the kernel has finished making use of a module it may either be removed manually with rmmod(8) or the same kerneld(8) will notice that it is no longer in use and automatically remove the module after a time delay. From the point of view of someone who develops program code for the kernel, this ability to add and remove sections of the code dynamically is a wonderful debugging facility.
�5.2 Internal Structure of the Protocols

In order to support the development of protocols, the kernel offers a set of services that may be called upon by kernel modules�. These services include access to high resolution timers, queues of data packets, device driver interfaces and user level interfaces. When compared with the requirements that are stated in the analysis section of this document it can be seen that the support is adequate to implement the protocols in a straightforward manner.

It was decided early on in the project not to implement the Multi-Link Procedure due to the perceived lack of need for it within the X.25 community. Once this decision was made, the next design decision was which particular arrangement of the protocols within the kernel would be the most flexible. The initial design followed the arrangement of the protocols closely.

�

The distinction between the Kernel Protocols and Device Drivers is not arbitrary. Within the kernel each has an assigned position within the source code and a well defined set of interfaces to communicate with the levels above and below. For example the Device Driver does not communicate directly with the associated Kernel Protocol, instead it tags the data to be passed with a protocol label and passes it to an intermediate interface handler. The Kernel Protocol has earlier registered its “interest” in receiving packets of a particular protocol type with the same interface handler and so the data packet is passed to it. This allows much flexibility since a single Kernel Protocol could potentially handle many different protocols. In addition the kernel supports the idea of “loadable modules” which allow sections of the kernel to be added and removed dynamically, this mechanism allows support for such a system without pain.

The above arrangement of the protocols was fine as far as it went. However three pieces of information caused this design to be rejected:

Some X.25 cards can perform the LAPB protocol themselves, and
The Packet Layer may be used over other reliable link layer protocols, and
LAPB is used by other protocols.

Items (1) and (2) meant that the LAPB protocol in the kernel should be an optional unit which may or may not be used, making it an optional unit meant that item (3) could be achieved easily. Item (2) was of particular relevance almost immediately since the Linux/SNA project was implementing 802.2 LLC. 802.2 LLC is a close cousin of LAPB for use specifically over Ethernet, and the protocol was being implemented within the area marked for Kernel Protocols. After much thought the following relationships were worked out and used as a basis for the implementation.
�

This arrangement meant that all devices that supported LAPB, whether by using the Linux LAPB module, or through their own hardware, provided a consistent interface to the Packet Layer. This is good, for it provided a chance to define a set of internal protocol primitives for communication between the Device Driver and the Packet Layer. These were published early on in the project along with the LAPB module interface to allow third parties to write their own hardware specific device drivers.

Since this arrangement was finalised, the people responsible for ISDN under Linux have expressed an interest in using X.25 over the ISDN B-channel. If they were to make their ISDN devices appear as a standard LAPB device then the Packet Layer will operate over ISDN without changes. It is unfortunate that the 802.2 LLC module did not appear elsewhere in the kernel code hierarchy, but considering the way that the Ethernet device drivers are implemented, its position is understandable, therefore X.25 over 802.2 LLC is handled in a different manner than over LAPB.
�5.3 Implementation of the Link Access Procedure B

Of the two protocols implemented, LAPB was the one that most closely followed the design set out in the SDL diagrams. Each physical connection has only one LAPB session active on it, and therefore it does not have to worry about creating child processes to deal with each incoming connection request, unlike many protocols.

The two main differences between the theoretical model of LAPB and the implementation, are simplifications due to the environment the LAPB module operates in. They are:

The LAPB module cannot refuse an incoming SABM or SABME due to being “busy”. It has no way of being told whether there are any higher level protocols listening for the incoming data. Adding such a provision would add a lot of complexity for very little gain.

For many of the same reasons as (1) above, the LAPB module is unable to send RNR frames to indicate that it is being overloaded with incoming data. This is less of a problem than it may first appear as the higher level protocols above LAPB also have the concept of flow control and are able to throttle back the data flow independently. It can be argued that in an environment where the Packet Layer and LAPB protocols are so closely inter-linked, software wise, that the LAPB RNR frame is not needed in any case.

5.3.1 External Interfacing

With the model of interaction chosen for LAPB, as a module service device drivers, the API produced was designed to make the usage of the LAPB module as simple as possible. Because of its general purpose nature it was decided to model the interaction of the LAPB module and the device driver with that of files. The device driver “opens” the LAPB module before use and passes it a unique identifier to indicate the particular instance of the module. Originally the LAPB module returned a unique identifier to the device driver, but this was changed for ease of use reasons, the identifier passed by the device driver may be the address of a local data structure and so that the device driver can quickly find the associated local information given the identifier. In either case some form of lookup in a table is required, it was decided to put it into the LAPB module. When a device driver has finished using the LAPB module, he must “close” it.

The LAPB module has callable functions to pass information to it, and callbacks which are device driver supplied functions which are called by the LAPB driver when it needs to pass data back to the device driver.

The full set of functions available to the device driver is set out below:

Name�Use��lapb_register�“Open” the LAPB module.��lapb_unregister�“Close” the LAPB module.��lapb_getparms�Get the current LAPB operating parameters.��lapb_setparms�Set the LAPB operating parameters.��lapb_connect_request�Open a LAPB connection to the remote system.��lapb_disconnect_request�Close a LAPB connection.��lapb_data_request�Send data to the LAPB module to be transmitted to the remote system.��lapb_data_received�Send data to the LAPB module that has been received from the remote system.��
The callbacks that the device driver supplies are given to the LAPB module with the lapb_register function. Not all of the callbacks need to be specified, a NULL value for a callback indicates that the device driver is not interested in receiving it. The callbacks are given below:�
�Callback�Use��connect_confirmation�A connect requested initiated by lapb_connect_request has some form of reply.��connect_indication�A connect request initiated by the remote system has been received.��disconnect_confirmation�A disconnect request initiated by lapb_disconnect_request has some form of reply.��disconnect_indication�A disconnect request initiated by the remote system has been received.��data_indication�Data received from the remote system which should be passed onto the next layer in the protocol stack.��data_transmit�Data that is to be transmitted to the remote system.��
Both the functions and the callbacks include a code which indicates whether an error has occurred or not, this should always be examined by the device driver in case of problems.

It can be seen that there are two separate data paths in the above functions and callbacks, these relate to incoming and outgoing data. This is best shown by use of a diagram:

�

The full API is detailed in appendix A, this API description also appears in the file linux/Documentation/networking/lapb-iface.txt in the Linux source tree.

5.3.2 Internal Structure

The source code for the LAPB module is contained in the directory linux/net/lapb, and it is made up of the following source modules:

lapb_iface.c

This file is concerned with the functions and callbacks that make up the interface to the LAPB module, it also includes a few utility functions within it that are used for housekeeping the internal LAPB control structures.

lapb_in.c

This is where the LAPB state machine resides. All of the pure protocol state machinery is in this file apart from code which is concerned with handling timer events such as T201 and T202. Much of the code in this file is closely based on the algorithms in the SDL diagrams.

lapb_out.c

The code in this file are chiefly associated with the transmission of I frames is, as well as the implementation of the subroutines used by the LAPB state machine. The names of the subroutines match those in the SDL diagrams with the prefix lapb_ appended.

lapb_subr.c

This file contains a number of utility functions, among these are the functions that assemble and disassemble the data from the LAPB frame into structures for internal use within the LAPB module. It is in this file where the different addresses for DCE/DTE operation and the different control fields for standard/extended mode are handled.

lapb_timer.c

This file contains the state machine code which handles the expiry of T201 and T202 (named T1 and T2 in the actual code). The code here is also very close to that found in the SDL diagrams. There is a little code in here which handles the difference between DCE and DTE mode when disconnected, in DCE mode, a DM is generated every T201 time interval as per the X.25 specification.

There are two important C header file that LAPB requires, the first is linux/include/linux/lapb.h and it contains defines and function prototypes that are required by any device driver that wishes to use the LAPB module, it defines the public part of the LAPB module. The other file, linux/include/net/lapb.h is the private part of the LAPB module, it too contains defines and function prototypes, but not for the use of modules outside of the LAPB code. There is one part of this private header file of interest, and that is the define of LAPB_DEBUG which can take a value between zero and three to set the different levels of debugging information generated by the LAPB module. A value of zero is none at all, and a value of three is enough to slow down a Linux system considerably, but good for tracking problems down.
�5.4 Implemention of the Packet Layer Protocol

The Packet Layer implementation is further from being a straight implementation of the SDL diagrams than the LAPB protocol is. This is brought about by the need to fit in with the UNIX/Linux concept of having a single listening entity, which then creates child entities whenever a valid incoming connection request is received, or creating separate entities every time a new outgoing connection is required. The SDL diagrams are based upon the model of having a separate entity for each potential incoming or outgoing connection. Despite this obvious mismatch, the actual protocol state machine structure within the kernel is still similar to the theoretical models described earlier.

Also unlike the LAPB protocol, the Packet Layer is implemented as a pure protocol within the kernel and does not offer any special programming API apart from the standard kernel socket programming interface. In this respect the Packet Layer implementation is much less interesting than the LAPB implementation.

5.4.1 Packet Layer to LAPB Communication

The way that the Packet Layer and the LAPB protocols communicate is via special messages that pass across the protocol/device driver interface. This takes the form of tagging each message passed with a leading byte that indicates what information the rest of the message contains, be it data to be transmitted, parameters to be set, or connections to be made or broken. The message structure was published early on so that implementers of device drivers could comment on the structure. Many of the details of the parameter passing messages have still to be worked out in detail at this time, but the basic structure is consistent.

Packet Layer to LAPB

First Byte�Message�Meaning��0x00�Data�Data to be transmitted over the LAPB connection.��0x01�None�Establish a LAPB connection.��0x02�None�Terminate a LAPB connection.��0x03�Parameters�Set the parameters for the LAPB connection.��
LAPB to Packet Layer

First Byte�Message�Meaning��0x00�Data�Data received over the LAPB connection.��0x01�None�LAPB connection has been established.��0x02�None�LAPB connection has been terminated.��0x03�Parameters�Return the current LAPB parameters.��
This messaging interface is not used when dealing with the 802.2 LLC protocol. That interface is done via normal function calls which are specific to the LLC module. This different interfacing method is brought about because of the different position of the 802.2 LLC module within the kernel networking framework.

The full message structure is documented in Appendix B, and is appears in the file linux/Documentation/networking/x25-iface.txt in the Linux source tree.

5.4.2 Internal Structure

The source code for the Packet Layer protocol is located in the directory linux/net/x25, and it is made up of the following modules:
af_x25.c

This file is mostly concerned with implementing interfaces to the internal socket structures, so that users can interact with X.25 via the socket interface. This requires a large amount of utility routines to error check and maintain the internal data structures in a consistent state. One of the most interesting interfaces is the /proc/x25 entry, this is a dynamically created “file” that appears in the /proc file system, the contents of this reflect the current state of all the X.25 connections and is generated dynamically whenever a user does a read of the pseudo-file.

sysctl_net_x25.c

This file is used to handle the Linux SYSCTL interface, this is a means by which users (with suitable privileges) can read and write values that are used within the protocol. In the case of X.25 the values that may be changed are timer values, and they have predetermined maximum and minimum values that are enforced by the kernel. These SYSCTL entries appear in the /proc file system in the directory /proc/sys/net/x25.

x25_dev.c

This file is the interface between the kernel functions and the external link layer protocols, LAPB and 802.2 LLC. In the case of LAPB, the functions are mapped into messages, and with 802.2 LLC they are mapped onto the function calls for the LLC module. If any other link layer protocol were to be needed by the Packet Layer then the interface code would appear in this file, x25_dev.c provides an abstract interface to the rest of the Packet Layer.

x25_facilities.c

This file contains all the functions associated with creating, parsing and negotiating the X.25 facilities values. The process of adding new X.25 facilities is achieved by modifying the x25_facilities structure and modifying the code within this source file. Any X.25 facilities which are received and are unknown to the system are logged to the system log so that they can be investigated further.

x25_in.c

This file contains the majority of the
Packet Layer
state machine code apart from any code associated with state zero, the disconnected state. The reasons for this have been outlined earlier, also the processing of timer events is not handled in this file either. The procedure for re-assembling messages that have been split across multiple X.25 messages is to be found in this file.
 The restart state machine is not implemented in this source file.

x25_link.c

This file implements the
separate

restart state machine that is common to all of the Packet
Layers operating on a single link layer.
All data to be transmitted must pass through this file before being transmitted, if a link has not been restarted then the data to be transmitted is queued in readiness for the link becoming active.
 This file handles the timer used by the restart state machine.

x
2
5
_out.c

The code in this file are chiefly associated with the transmission of I frames is, as well as the implementation of
the subroutines used by the Packet Layer
 state machine. The names of the subroutines match those in the S
DL d
iagrams with the prefix x25_ a
ppended.

x25_route.c

The file implements the X.25 routes database, it includes functions to add and remote routes as well as a function to map a destination address to a device. Addresses within the Linux/X.25 implementation are stored as null terminated ASCII strings for ease of handling.
 This file also implements an entry in the /proc file system named /proc/net/x25_routes which gives a list of all the current X.25 routes.

x
2
5
_subr.c

This file contains a number of utility functions, among these are the functions that assemble and di
sassem
ble the data from the Packet La
yers
 frame
s
 into structures for int
ernal use
. It is in this f
ile where the
different control fields for standard/extended mode are handled.

x
2
5
_timer.c

This file contains the state machine cod
e which handles the expiry of
the timers.
 The code here is also very close to that found in the SDL diagrams.
 One
optimisation is to use one timer
 for all the timers defined in the SDL diagram, this is possible since only one of the timers is active at any one time
, the identity of the particular timer being emulated bein
g determined by the current state of the state machine. The timer used in the restart state machine is not handled in this file.

There are three
 i
mportant C
 header file that the Packet La
yer
 requires, the f
irst is linux/include/linux/
x25
.h and it contains
 defines and structure layouts
 that are required by any
user that wishes to use the X.25 protocol via the socket interface
.
The second file, linux/include/net/x25
.h is the
 private part of the P
a
cket
Layer, it too contains defines and structure layouts, but not for the use of users
.
 The third file linux/include/net/x25call.h is of no particular interest, it is simply a function prototype used within the kernel, its existence
is for optimisation reasons.

�5.5 Berkeley Sockets and X.25

The standard UNIX interface for networking is called the Berkeley Sockets. The name derives from the place where the interface was invented, the University of California at Berkeley, the home of BSD UNIX, and the paradigm used. Although UNIX treats a network connection as a file, the semantics of file handling don’t always fit the realities of networking outside of the read and write primitive functions. Therefore an additional set of primitives was introduced to handle the networking specific functionality required. This section is not meant as a guide to programming using sockets, such a task is beyond the scope of this document, but is designed to draw attention to those features of X.25 that make the use of sockets with it a little different from normal TCP/IP practise.

The way that a networking connection was initially created is with the socket function, this did not create a connection to a particular end point, but merely set up the basis of such a connection. The arguments to socket included the type of connection required and the protocol family to be used, and other protocol specific information. If making an outbound connection, the next function to be used may very well be connect, this would attempt to create a connection to a remote system that was specified in the arguments to the connect function. The standard read and write functions would then be used to perform the communication and the connection would be ended by a call to the close function.

If some form of listening process was required, for example implementing some form of server, then a different set of functions would be used. The socket would be opened as before with a call to the socket function, then the socket would be tied to a particular local address by the use of the bind function. The socket would then be told to listen for incoming connections with the listen function and finally the accept function would be used to handle the incoming connections. Each incoming connection would cause a new socket to be created within the kernel and that would be returned to the user program which could then process the new connection as well as continue listening on the original socket. The new socket would be used with the read, write and close functions as above.

In addition a number of utility functions are provided to get and set information about a particular connection, for example getpeername would return the address of the remote system, and setsockopt could be used to set some protocol specific parameters during the course of the connection.

This model is perfectly adequate for all networking connections, and since TCP/IP is the native networking protocol within UNIX there is a high degree of standardisation between implementations of the socket interface for TCP/IP. Unfortunately when dealing with protocols that are different from TCP/IP, this consensus breaks down, and nowhere is this more pronounced than when dealing with X.25 socket implementations.

The differences between the various implementations show themselves in a number of ways. The layout and names of the X.25 structures differs, and the use of the standard socket interfaces differs in subtle ways from the accepted convention. Some of this is understandable due to the differences between TCP/IP and X.25, but some of the differences appear to be gratuitous in the extreme.

Starting with the socket function, there is no agreement as to what the correct arguments should be. TCP/IP is a stream based protocol, that is the connection between the two computers is viewed as a continuous stream of bytes without any concept of message boundaries at the protocol level. In contrast, X.25 is message based, the protocol allows the data to be seen as a series of messages, and these boundaries are preserved by the protocol. Given this, the type of an X.25 socket is not the same as that for a TCP/IP socket. However some X.25 implementations do not make this distinction. Within the Linux/X.25 implementation this distinction is made plain, and the only valid arguments to the socket function for X.25 are:

s = socket(AF_X25, SOCK_SEQPACKET, 0);
in comparison the equivalent socket call for TCP/IP is:

s = socket(AF_INET, SOCK_STREAM, 0);

The AF_X25 value is also not standard between implementations, but unlike the second argument this is more cosmetic, an alternative is AF_CCITT which is less exact. The term SOCK_SEQPACKET is exactly descriptive of X.25 as “Sequenced Packets”. The final zero in both examples simply means that the default protocol is to be used.

The calls to both bind and connect use a protocol specific structure that allows for information about the protocol specific addresses to be passed between the kernel and the user program. This is yet another area where there is confusion between the different implementations, some implementations include extra information in the structure that relates to the X.25 facilities, this is wrong. The purpose of the structure is to pass address information, nothing more, to add any extra to it is completely against the principles of the functions. Within the Linux/X.25 implementation this clarity of purpose has been retained by keeping the structure simple. The structure used is:

struct sockaddr_x25 {
sa_family_t	sx25_family;	/* Must be AF_X25 */
x25_address	sx25_addr;		/* X.121 Address */
};

with the x25_address structure being defined as:

typedef struct {
char x25_addr[16];
} x25_address;

the X.121 address is stored as a null terminated string of ASCII digits, up to a maximum length of fifteen digits. This is almost adequate to control the X.25 networking, however there is a semantic difference between TCP/IP and X.25 that must be overcome.

The problem occurs when connecting out with X.25. In a UNIX TCP/IP implementation each hardware interface has its own IP address, the address used for our computer is the address associated with the interface used for the connection. This is determined by the routing table. It is possible to override this default address by calling the bind function before the connect function, but this is not normally done in practise. However with X.25 we do not have the same concept of an X.25 address per physical interface so another system has to be chosen.

What is done with X.25 is to use the bind function before connect to set our local X.25 address to be used. This works fine but it does require a slight difference in programming paradigm between TCP/IP and X.25.

To further confuse matters many commercial X.25 networks leave out some X.25 addresses ! The reasoning behind this is that our local X.25 address is known to the network provider and to us, and so it is not transferred. This works both ways, and we do not need to fill in our address when making a Call Request, it is filled in by the network before the packet arrives at its destination. This causes some interesting problems for the use of bind. The way this is got around is to have a flag associated with a device that tells the kernel whether this interface uses addresses or not. If addresses are not used then the calls to bind are ignored by the kernel, and the address is left blank. The same behaviour can also be reproduced within a program by not calling bind before connect or listen, but that would imply a different program for each network type, or the need to have a special configuration flag for each program.

From earlier sections it can be recalled that the size of each X.25 packet may be negotiated between the two systems at connection time, any data to be transferred which is larger than this value, is split into smaller chunks and a flag set on the X.25 packet to say that the packet belongs to a series. The data is reassembled at the receiving end and passed to the user program in the same form as it was sent from the other user program. This means that the process of fragmenting and de-fragmenting the data is done by the kernel, at least one X.25 implementation requires the user level program to do this instead.

There is an option unique to X.25 that user programs need access to. The X.25 Q bit is a one bit flag that is transferred on every message passed between the two systems, it has no bearing on the operation of the protocol and is available for use by user programs. For this to happen some mechanism is needed to get and set its value. The default is for the Q bit not to be set, and the value not to be available to the user program. If access to the Q bit is required then the setsockopt function is used to set the option X25_QBITINCL to true. When this is done, the first byte of the data sent and received by the read and write functions is the Q bit value. A value equal to one means that the Q bit is not set, and not equal to zero means that it is set. This also means that the data transferred between the user program and the kernel will be one byte larger than the real length of the data to be transferred. With this mechanism it is very easy to set the Q bit value on a per message basis which is required by some programs.

Another area unique to X.25 is the use of facilities. With X.25 facilities it is possible to transfer and negotiate information between two X.25 systems (and the network) at connection start time. The X.25 facilities supported at present are:

the incoming and outgoing window sizes,
the incoming and outgoing packet sizes,
the throughput speed,
reverse charging.

Each of these has a reasonable default, but may be both set and examined by the user level program. All of these facilities are negotiated between the two systems and so the end value may not be the same as requested. These facilities are accessed by the ioctl function. The particular ioctl’s used being SIOCX25GFACILITIES and SIOCX25SFACILITIES with the data being passed in the following structure:

struct x25_facilities {
unsigned int winsize_in, winsize_out;
unsigned int pacsize_in, pacsize_out;
unsigned int throughput;
unsigned int reverse;
};

The packet sizes vary from X25_PS16 (16 bytes !) up to X25_PS4096 (4096 bytes), the default is X25_PS128 (128 bytes). The window size is a binary value and defaults to 2, the throughput is a measure of the equivalent serial line speed and has no default value. The reverse charging value is a binary flag that indicates that we are willing to accept reverse charging (incoming calls), or we are requesting reverse charging (outgoing calls), the default is no reverse charging.

The final unique feature of X.25 is the inclusion of data on connection packets. This is called Call User Data. It is set with the SIOCX25GCALLUSERDATA and SIOCX25SCALLUSERDATA ioctl values and the following structure:

struct x25_calluserdata {
unsigned int cudlength;
unsigned char cuddata[128];
};

the maximum size of the Call User Data is 128 bytes. Since Call User Data may be received from the remote system it is important that the Call User Data is checked after the connection has been set up in case any has arrived.
�Testing

The testing of the Linux/X.25 implementation took place in two sections. The first section was borne of desperation at getting some form of test harness working with the minimum effort and time, and it fulfilled these requirements with ease. Initially only the Packet Layer was implemented, it will be understood from the previous sections that the Packet Layer is much simpler than LAPB and was the ideal candidate for implementation first. It was hoped that success with that protocol would encourage the development of LAPB, it was also hoped that by testing the Packet Layer separately it would avoid the problems of debugging two protocols simultaneously.

What was required was a way to connect two Packet Layer implementations together in a manner that would present the same properties as a LAPB connection, i.e. reliable packet delivery, ordered reception of the data and error detection and correction. The testing takes place on two PC clones which are connected by both an Ethernet and a null modem cable, the Ethernet is not shared with any other computers and only handles a very small amount of traffic. In such a quiet environment Ethernet presents many of the properties required for testing, it is close to being 100% reliable, and the order of the packets transmitted is preserved. It does include error detection but no form of error correction. However the reliability of the Ethernet is such that errors would be very rare indeed and could be discounted.

A simple protocol was created to handle the fact that the smallest Packet Layer packet was smaller than the minimum legal Ethernet packet. The Ethernet driver guaranteed the length of the packets by padding the undersize packets with junk. This junk had to be removed at the receiving end and so a two byte length field was added to the front of the packet to ensure that the original data was recoverable at the far end. It was also decided at this time to commandeer the Ethernet identification code used by DECNET for testing since this did not clash with any existing kernel protocols.

It was a simple matter to write a small kernel device driver that interfaced the Ethernet driver to the Packet Layer. This led to the following arrangement.
�

This arrangement allowed for the testing of the Packet Layer protocol in isolation. A small program x25trace (to be described later) was created to allow for the viewing of the exchanged data, the test programs were simple programs that allowed for data to be sent from one computer to the other.

The above was enough to find the most obvious bugs in the Packet Layer implementation, and ensured that it would not make the computer unstable or generally corrupt the kernel. Much was left un-implemented, like facilities negotiation, but such things were always going to be secondary to the implementation of the main protocol elements. The original assumptions made about the reliability of a quiet Ethernet segment were confirmed by the above, the Packet Layer protocol is unable to recover from the loss of a packet but such a protocol failure was never experienced with the above configuration.

Once the Packet Layer protocol was stabilised, attention was turned to implementing the LAPB protocol. Two problems immediately appeared:

Lack of any real X.25 hardware, and
DTE/DCE differences in LAPB.

The first item was not that significant, a draft set of interface specifications between the various modules had already been drawn up and as long as those specifications were followed it did not matter that the hardware was different. But this left the question as to what hardware to use. The obvious answer was to use the Ethernet as the physical medium again, but this time with LAPB being used over it as well as the Packet Layer. The special device driver was modified to incorporate the LAPB module and during this process the interface specifications underwent a number of revisions as the implementation proceeded.

There is no known standard for the use of LAPB on an Ethernet. It is usually assumed that the Packet Layer will always be hosted by 802.2 LLC in such an environment. The same problems encountered with the previous testing phase still occurred with reference to the minimum packet size, and so the length field was retained. This led to the following arrangement of modules.
�

This did not get over the problem of DTE/DCE differences within LAPB. After much thought it was decided to implement a DCE mode within the LAPB module, the default being DTE mode. Adding it was not particularly difficult but it did add extra complexity to the LAPB module and it meant that prior to testing, it had to be remembered to configure one of the computers as a DCE. Forgetting to do so could cause some serious performance problems that would defy analysis until the mistake had been rectified.
�5.7 Support Programs

In order to use the Linux implementation of X.25, a couple of small utility programs are required. By their very nature they are specific to this particular implementation of X.25 and therefore cannot be copied or cloned from the BSD implementation of X.25. These consist of a program to set the routes used by X.25 and a program to trace the packets and data passed by the Packet Layer.

5.7.1 x25route

This program is at the heart of the Linux/X.25 implementation. The purpose of x25route is to communicate to the kernel information about the routes to be used for all outgoing packets from the kernel. The syntax of x25route is:

x25route add <address>[/<mask>] <device>
x25route del <address>[/<mask>] <device>

The first form of the command adds a new route to the internal routing table. The address is an X.121 address (a number up to fifteen digits in length) and an optional mask count. The device argument is an already existing X.25 device or if configured for using 802.2 LLC over Ethernet, a valid Ethernet device.

The way that the address and mask arguments work is the key to the power of the command. An X.121 address is like a telephone number, and like a telephone number the most significant digits occur at the left of the number. The format of the number is network dependent, so it is not possible to say that the first four digits are the area code, or be specific in any way about the number. Therefore the only way that a general purpose routing mechanism can be implemented is by allowing for routing decisions to be made on varying length addresses. The optional mask argument is a number between zero and fifteen (the maximum length of an X.121 address) and may not be greater than the length of the address argument.

The best way to illustrate the use of this variable length routing mechanism is by the use of examples:

x25route add 2080/4 lapb0

would send all packets destined for an address starting with 2080 via the device lapb0. This would include the specific address 2080 as well as 2080192203.

X25route add 2080192203 lapb1

would send all packets destined for the address 2080192203 or which start with that number in the first ten positions, via the device lapb1. In the case where only one interface were available for X.25, then it would make sense to send all packets via that interface regardless of address, this is catered for with the entry:

x25route add 0/0 lapb0

the important part of the above is the mask argument of zero, the address value of zero is unimportant but is required to satisfy the format of the command.

It is not possible to add two routes with the same address and mask settings to the system. That will be rejected by the kernel as the result would be non-deterministic routing.

The route deletion mechanism is almost identical to the route addition mechanism with the caveat that any entry to be deleted must already exist in the kernel routing table. The kernel will return an error code if that is not the case. Therefore the specification of address, mask and device must match an existing entry to be effective. Due to the potential of this program to disrupt a running system, it may only be used by someone who has super-user privileges on the computer system.

x25trace

The x25trace command is used to trace the packets sent and received by the X.25 packet layer. Due to the way that the device drivers and protocols are structured within the kernel it is not possible to trace at a lower level. Indeed if the system makes use of an intelligent X.25 card that does all the LAPB processing, it would be impossible to do the tracing at a lower level without some very complex hardware modifications to the computer. Within this constraint the x25trace program does perform a useful function. The format of the x25trace command is:

x25trace [-h]

The -h option is used to allow for the dumping of all the user data as hexadecimal as well as text. The default is to dump the data as text. The output of the x25trace program is a textual representation of all the inbound X.25 Packet Layer packets. The program could be modified to allow for the tracing on outbound packets too, but this would be highly inefficient due to the way that it is implemented in the kernel and can adversely affect the performance of a running system. This restriction is not X.25 specific.

The program will trace all known X.25 Packet Layer primitives and will dump X.121 and the X.25 facilities recognised by the kernel. It will also provide a textual interpretation of the reason and error codes that are encountered on some of the Packet Layer packets.

This form of tracing is a potential security hole within the kernel, it is potentially possible to read plain text passwords and so it is a requirement that only users who have super-user privileges may run this program.

Other Programs

There are a number of other program for X.25 use available on the Internet. All of them have their basis in the BSD implementation of X.25 which differs in subtle ways. Each of them could easily be ported to the Linux implementation, and in due course they will be. The two major ones are x29d and ISODE. X29d is a program that allows for a computer with an X.25 implementation to be used by remote terminals connected to an X.25 PAD, the protocol used for this is known as X.29 and makes full use of the facilities offered by X.25. The program has not been ported at this time.

A more major project is the porting of ISODE. ISODE stands for the ISO Development Environment and is a set of higher level ISO protocols that may make use of X.25 as a transport mechanism. Until release 8.0 ISODE was in the public domain, but it is now developed by the ISODE Consortium who license it for money, although academic institutions do receive pricing discounts. However release 8.0 is still available free of charge and has already been ported to Linux, making use of the kernel TCP/IP services for its transport mechanism. The porting of ISODE to use the kernel X.25 implementation would be a worthwhile endeavour as it would allow for a complete ISO protocol implementation to be in the public domain.

� The term Module as used here is in the general sense of the word, not the Linux specific meaning of the word.

�PAGE

�

�PAGE

�
60
�

Kernel

Socket
Interface

Device Driver Interface

User
Programs

Protocol
Engine

Device
Driver

Hardware

Kernel Protocols

User Level

Device Drivers

Kernel Protocols

Device Drivers

Hardware

X.25
Packet
Layer

X.25 Card
Device Driver

X.25
Card

User
Level
Programs

LAPB
Protocol
Layer

Kernel Protocols

User Level

Device Drivers

Kernel Protocols

Device Drivers

Hardware

X.25
Packet
Layer

Intelligent
X.25 Card
Device Driver

“Dumb”
X.25 Card
Device Driver

LAPB Module

“Dumb”
X.25
Card

Intelligent
X.25
Card

User
Level
Programs

Ethernet
Card

Ethernet
Card
Device Driver

802.2
LLC
Driver

LAPB
Module

Part of
Device
Driver

Part of
Device
Driver

Part of
Device
Driver

Part of
Device
Driver

lapb_data_request

lapb_data_received

data_transmit

data_indication

Incoming

Outgoing

Hardware

Device Driver - Protocol Interface

Packet
Layer
Protocol

X.25 to Ethernet Interface

Ethernet
Driver

Test
Program

Packet
Layer
Protocol

X.25 to Ethernet Interface

Ethernet
Driver

Test
Program

Computer 1

Computer 2

Ethernet

Packet
Layer
Protocol

LAPB
Ethernet
Driver

Ethernet
Driver

Test
Program

Packet
Layer
Protocol

LAPB
Ethernet
Driver

Ethernet
Driver

Test
Program

Computer 1

Computer 2

Ethernet

LAPB
Module

LAPB
Module

